

LA-UR-18-24356

Approved for public release; distribution is unlimited.

Title: Update on Salt Disposal R&D LANL

Author(s): Stauffer, Philip H.

Intended for: DOE-NE program review

Issued: 2018-05-18

Update on Salt Disposal R&D LANL WP#SF-18LA01030301

Philip Stauffer
Los Alamos National Laboratory

SFWST Annual Working Group Meeting University of Las Vegas May 23, 2018

Overview of Activity

Examine heat/brine/vapor/salt interactions related to heat generating nuclear waste

- Improve numerical modeling capabilities (https://fehm.lanl.gov)
 - Validate reactive transport model functions for salt against all available data
 - Identify any gaps in capabilities
 - Improve existing model functions
- Design and execute experiments : generate data to compare to simulations
- Benchmark with other numerical codes PFLOTRAN/TOUGH3

Connection to Bigger Picture

1. Introduction, Purpose, and Context

2.1 Management Strategy

- a. Organizational/mgmt. structure
- b. Safety culture & QA
- c. Planning and Work Control
- d. Knowledge management
- e. Oversight groups

2. Safety Strategy

2.2 Siting & Design Strategy

- a National laws
- b. Site selection basis & robustness
- c. Design requirements
- d. Disposal concepts
- e. Intergenerational equity

2.3 Assessment Strategy

- a. Regulations and rules
- b. Performance goals/safety criteria
- c. Safety functions/multiple barriers
- d. Uncertainty characterization
- e. RD&D prioritization quidance

3. Technical Bases

3.1 Site Selection

- a. Consent-based siting methodology
- b. Repository concept selection
- c. FEPs Identification
- d. Technology development
- e. Transportation considerations
- Integration with storage facilities

3.2 Pre-closure Basis

- a. Repository design & layout
- b. Waste package design
- c. Construction requirements & schedule
- d. Operations & surface facility
- e. Waste acceptance criteria
- f. Impact of pre-closure activities on post-closure

3.3 Post-closure Buses (FEPs)

3.3.1 Waste & **Engineered Barriers** Technical Basis

- a. Inventory characterization b. WF/WP technical basis
- c. Buffer/backfill technical
- d. Shafts/seals technical basis UQ (aleatory, epistemic)

3.3.2 Geosphere Natural Barriers **Technical Basis**

- a. Site characterization b. Host rock/DRZ technical
- c. Aquifer/other geologic units technical basis d. UQ (aleatory, epistern

3.3.3 Biosphere Technical Basis

- Biosphere & surface environment:
- Surface environment
- -Flora & fauna -Human behavior

4. Disposal System Safety Evaluation

4.1 Pre-closure Safety Analysis

- a. Surface facilities and packaging
- b. Mining and drilling
- c. Underground transfer and handling
- d.Emplacement operations
- e.Design basis events & probabilities f. Pre-closure model/software validation
- g.Criticality analyses
- h.Dose/consequence analyses

4.2 Post-closure Safety Assessment

- a.FEPs analysis/screening
- b. Scenario construction/screening
- PA model/software validation
- d.Barrier/safety function analyses and subsystem
- e.PA Model Analyses/Results
- f. Uncertainty characterization and analysis
- g. Sensitivity analyses

.3 Confidence Enhancement

- a.R&D prioritization
- b.Natural/anthropogenic analogues
- c. URL & large-scale demonstrations d. Monitoring and performance confirmation
- e.International collaboration & peer
- f. Verification, validation, transparency Qualitative and robustness arguments

5. Synthesis & Conclusions

a. Key findings and statement(s) of confidence

- b. Discussion/disposition of remaining uncertainties
- c. Path forward

Spent Fuel and Waste Science and

Connection to Bigger Picture

Technology

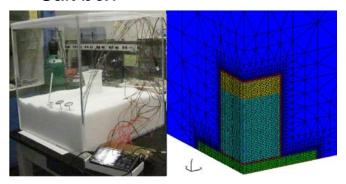
- *2. Physical-chemical properties of crushed salt backfill at emplacement
- 3. Changes in physical-chemical properties of crushed salt backfill after waste emplacement
- 5. Mechanical response of backfill
- 6. Impact of mechanical loading on performance of the waste package
- 7. Brine and vapor movement in the backfill and emplacement drift, including evaporation and condensation
- 9. Mechanical and chemical degradation of the waste forms
- 11. Changes in chemical characteristics of brine in the waste package
- 12. Radionuclide solubility in the waste package and EBS
- 14. Stratigraphy and physical-chemical properties of host rock
- 15. Changes in physical-chemical properties of host rock due to excavation, thermal, hydrological, and chemical effects
- 16. Mechanical response of host rock due to excavation (e.g., roof collapse, creep, drift deformation)
- 17. The formation and evolution of the DRZ
- 18. Brine and vapor movement through the host rock and DRZ, including evaporation and condensation
- 23. Thermal response of EBS and geosphere (heat transfer from waste and waste packages into the EBS and geosphere)
- *25. Gas generation and potential physical impacts to backfill, DRZ, and host rock
- 27. Colloid formation and transport in the waste package, EBS, and host rock (including DRZ)
- 28. Performance of seal system
- 31. Appropriate constitutive models (e.g., darcy flow, effective stress)
- 32. Appropriate representation of coupled processes in process models
- 33. Appropriate representation of coupled processes in total system performance assessment (TSPA) models
- 34. Appropriate inclusion and scaling/representation of spatially and temporally varying processes and features in process and TSPA models
- 37. (Modeling) verification and validation
- 38. (Modeling) data and results management
- 39. Development of accurate instrumentation and methods for in-situ testing and characterization
- 40. In situ demonstration and verification of repository design, with respect to impact on the host rock and the ability to comply with pre-closure and post-closure safety requirements
- 41. Demonstrate under representative conditions the integrated design functions of the waste package, backfill, host rock, and ventilation
- 42. Provide a full-scale benchmark for understanding coupled THMC processes and comparing measured system responses with model predictions and assumptions
- 43. (Confidence-building) Develop generic safety case
- 44. (Confidence-building) Comparisons to natural and anthropogenic analogs
- *45. (Confidence-building) International collaboration
- 46. (Confidence-building) In-situ testing and demonstrations
- 47. (Confidence-building) Verification, validation, transparency, and traceability

Stauffer et al. 2015, UFD-2015-000077, modified from Sevougian et al. 2013

R&D prioritization

High Priority FEPs from scoping workshop for Salt

Evolution of backfill


Strong feedback of water on consolidation

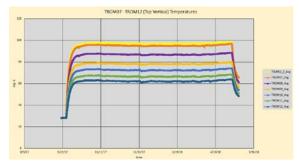
Dehydration of ubiquitous impurities

Generation of acid vapors (HCI)

Experimental success I

Salt box

Fluid inclusions

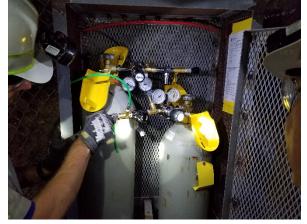

WIPP Salt cone

Acid gas generation

WIPP canister thermal data

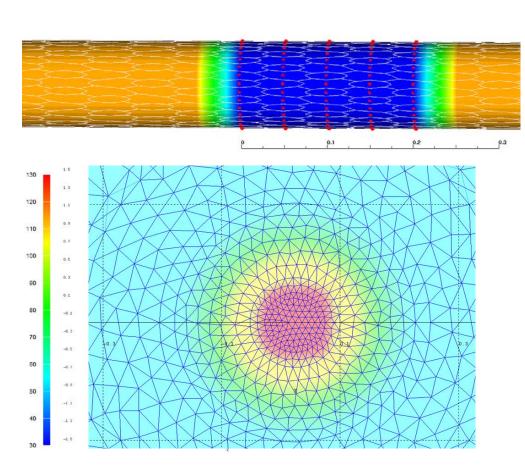
Experimental success II Field Test – WIPP Heated Borehole

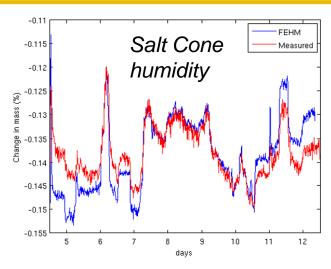
In progress



Feb 2018 Packer holes pressure in the hole



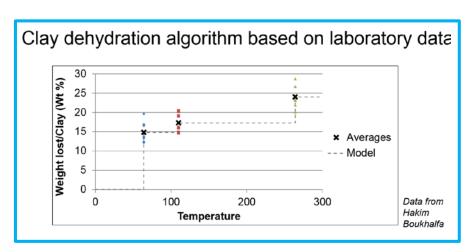

Nitrogen hooked up safely

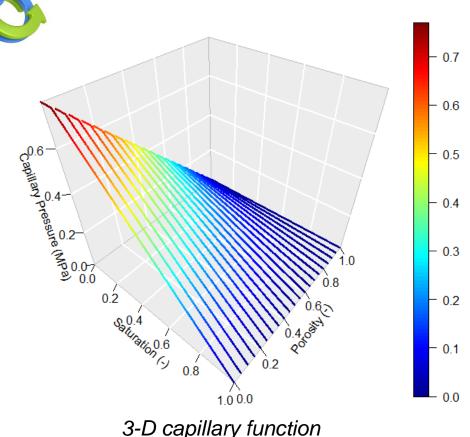

Update on Salt Disposal R&D LANL

May 2018 thermal data

Modeling success

Mass change (%) of salt cone, showing comparison of FEHM model results (blue) to lab measurements (red).


Predicted temperature profiles for WIPP borehole test


New Salt Functions in FEHM

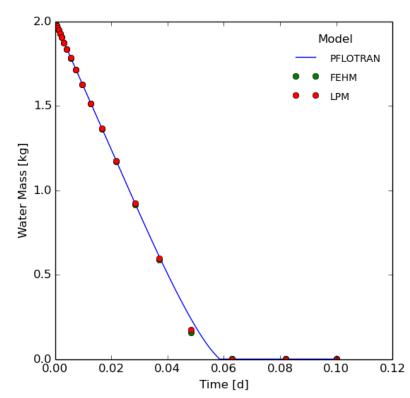
Changes in porosity lead to changes in:

permeability
thermal conductivity and heat capacity
vapor diffusion coefficient

Changes in temperature lead to changes in: thermal conductivity salt solubility water vapor pressure brine viscosity

Pc

Integration progress


■ LANL and SNL working to add capability to PFLOTRAN based on FEHM experience with code validation tests

- Given a constant flow rate we compared the FEHM solution to an analytical solution for water removal using the holding capacity of 20°C air and the air-flow rate
- FEHM and PFLOTRAN successfully dry out the matrix water and remove the water in vapor form

• Los Alamos
NATIONAL LABORATORY
EST. 1943

FEHM Test Problem #1

Spent Fuel and Waste Science and Future R&D & Integration Timeframe Technology

- Lab and Field results have yielded valuable data these will guide further R&D efforts for high priority FEPs
- Confirming processes and parameters and working to feed results back to PA tools. – ongoing.
 - Work with SNL to embed new physics into PFLOTRAN continues.
 - Having a dedicated PostDoc or early career staff member on this would help greatly speed up this task.
- Ensure constancy between DOE simulation tools for the same test cases
 - This could be tasked in the next year or two.
 - Base test cases on thought experiments and/or proven laboratory data.